
Abstract

We present a method for building  models of complex
environments from range data gathered at multiple view-
points. Our approach is unique in that no prior knowledge
of the relative positions of the viewpoints is needed in
order to register data from them. Furthermore, we present
a technique for specification and utilization of so-called
“common-sense” constraints on the transformations
between views to improve the accuracy and speed of the
registration process. Results are shown from our effort to
map a 60 m. by 20 m. multiple-room storage area contain-
ing a cluttered array of objects.

1.0  Introduction

 The problem of building models from multiple views is
critical in various applications, including remote opera-
tion, virtual environment building, and construction of
object libraries for recognition. In this paper, we consider
the problem of registering range data sets from multiple
locations in order to build a complete model of an environ-
ment. A typical scenario involves many viewpoints over a
large area with poor or nonexistent initial estimation of the
relative positions of the views. Eventually, our goal is to
build maps that cover hundreds of square meters at very
high (e.g., sub-centimeter) resolution.

This problem has many facets, including computing the
transformations between views, correcting the transforma-
tions to compensate for drift and error accumulation,
merging the views into a single model once the transfor-
mations are computed, and incorporating color and texture
information into the final model. Here, we focus on the
first problem: reliable registration of large point sets from
range data. Examples of view merging are shown only to
illustrate the results of registration.

Two broad classes of techniques have been developed for
point set registration. Methods based on feature matching
establish correspondences between point features or sur-
face primitives to compute transformations [3][4]. These

approaches do not rely on prior knowledge of the transfor-
mations but they do require reliable extraction of the fea-
tures, which is a difficult problem in itself. Methods based
on iterative refinement start with initial estimates of the
transformations between views and refine them by itera-
tive minimization of a criterion based on the distance
between point sets. The best-known technique of this type
is the ICP algorithm originally proposed by Besl and
McKay [2]. ICP has been used in model building systems
[15] and numerous extensions have been proposed, e.g.,
by Zhang [17] and Wheeler [16].

Both classes of techniques have severe shortcomings that
prevent their application to practical model building prob-
lems. First, feature extraction and segmentation is not
practical in a general, cluttered environment due to the
large number of features and the complexity of the sur-
faces. Second, the relative positions of views is often not
known in advance to a high degree of accuracy; this pre-
cludes the use of iterative techniques. For example, posi-
tion estimates from dead-reckoning of a mobile platform
may be too inaccurate for iterative techniques to work,
especially over large distances. Also, in some applications,
peculiar environmental constraints may prevent the esti-
mation of relative poses. For all these reasons, it is desir-
able to use a matching technique which is general enough
to handle a wide variety of surfaces, and which does not
require any prior estimate of the transformation between
views.

The method described here is based on a general approach
to surface matching [9], which has been applied success-
fully to object recognition [12] and three-dimensional
object modeling. This method has two critical features
which address the shortcomings of previous techniques.
First, it does not require surface segmentation or feature
extraction. Second, it does not require knowledge of the
transformation between surfaces prior to registration.
Owing to these two features, this surface matching algo-
rithm can be applied to problems of large-scale model
building. The goal of this paper is to show how our match-
ing algorithm can be used in the context of mapping large,
cluttered environments. Specifically, we use as an example
the mapping of a large industrial facility.
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Although the surface matching algorithm does not require
any knowledge of the relative poses of the views, it is not
difficult to include pose constraints in the algorithm if they
are available. We show that extending the matching algo-
rithm to take advantage of such constraints is straightfor-
ward and can reduce the computation time by orders of
magnitude, even if the constraints are relatively weak.

2.0  Point Matching Using Spin-Images

In [9], Johnson introduces the spin-image, a two-dimen-
sional descriptor of the local shape of a free-form three-
dimensional surface at a point p on that surface. Spin-
images encode the positions of points near p in terms of
distance along and distance from the approximated normal
to the surface at p. By comparing this coordinate informa-
tion from the spin-images of two different points, we
arrive at a measure of local shape similarity between the
surfaces surrounding those two points.

To construct the spin-image for an arbitrary point p, we
first find the best-fit plane to the nearest neighbors of p and
approximate the normal to p as the normal to this plane.
We then define a 2-D basis using the normal n and the
plane P perpendicular to n and passing through p. For each
point x in the vicinity of p we compute its coordinates
(α,β) with respect to this basis; α is the distance from p to
x measured in the plane P, while β is the perpendicular dis-
tance from x to P (Figure 1.)

The (α,β) values are then discretized and accumulated into
a 2-D array of bins called a spin-image; each bin in the
spin-image corresponds to some range of α and β values.
These spin-images are compact descriptors of the local
shape of a surface around a particular point; if two points
have similar spin-images, they are considered to have sim-
ilar local shape (Figure 2).

Spin-image similarity is determined by simple linear cor-
relation of bin values, supplemented with a confidence
metric to take into account the number of empty bins in
both spin-images. Bins containing no points are not con-
sidered in the correlation calculation to help minimize the
effects of clutter and occlusion on shape similarity by only
considering bins in the spin images that have been filled.

The final similarity measure between two points takes into
account the number of bins used to compute correlation,
so that spin-images with the highest amounts of overlap
are considered the most similar.

Johnson shows in [9] that through determining the similar-
ity between spin-images of points from two different sur-
faces, it is possible to recover the transformation that
registers the surfaces even though no initial estimate of
this transformation is known at the time of registration.

3.0  Surface Registration

Spin-image matching provides a powerful tool for build-
ing large-scale models from sensor scans taken at unspeci-
fied locations. In this section we describe the process of
using spin-images to register range data taken from a vari-
ety of locations. We assume that regardless of the sensor
used, range data from it consists of 3-D points in some
fixed coordinate frame. Given these points, a triangular
mesh is formed by connecting nearest neighbors, and
noisy points and edges in this mesh are removed through
cleaning and smoothing operations. At this point, we have
a high-resolution 3-D representation of the model as seen
from a particular viewpoint; for reasons to be explained
below, we then simplify this surface using the algorithm
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Figure 1: The spin-image for point p is found by recording
the distance of all nearby points x from the surface normal n
(α) and the distance from x to p along n (β) (from [12]).
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Figure 2: Spin-images from points on surface
meshes from two views.  Spin-images from corresponding
points in the surfaces have similar spin-images.



found in [11] to obtain a low-resolution version of the sur-
face, as shown in Figure 3.

Given two low-resolution meshes, we register them using
spin-image matching as follows.  First, a fixed fraction of
points is selected at random from both surfaces. Spin-
images are produced for these points, and all the spin-
images from one surface are compared to all the spin-
images from the other using the similarity measure
described above. When a pair of spin-images are found to
have high similarity, the points that produced them are
considered to correspond to each other; after all spin-
image comparisons have taken place, we are left with a set
of point matches between the two surfaces. Finally, an
estimate of the transformation that aligns the two surfaces
is computed from the point matches using the algorithm of
[5].

The transformation aligning corresponding points is con-
sidered only a rough estimate of the true transformation
between the range data sets for two reasons: first, the low-

resolution mesh from which correspondences are drawn is
neccessarily an approximation of the raw data, and second,
the set of correspondences that determines the transforma-
tion consists of only a subset of the points on the simpli-
fied surface. For these reasons, after we find the
transformation that aligns the low-resolution meshes we
apply it to the high-resolution meshes; we then use the ICP
algorithm [2] on the roughly-aligned high-density surfaces
to refine the transformation estimate. The resulting trans-
formation aligns the full range data sets with acceptable
accuracy.

Registering low-resolution meshes and refining the trans-
formation estimate on high-resolution meshes was found
in practice to be much more efficient than registering the
high-resolution meshes directly. For example, one full-res-
olution data set like the one seen in Figure 2 contains
roughly 65000 points (compared to roughly 4000 points in
the adjacent low-resolution mesh); registering two meshes
of this size is computationally infeasible due to the num-
ber of spin-image comparisons required. In many cases,
the transformation that aligns the low-resolution surfaces
aligns the high-resolution surfaces so well that the ICP
procedure does not need to do much work to reduce the
error between the surfaces below an acceptable level.

Once several surfaces have been registered together, they
are transformed into the same coordinate frame and
merged using the algorithm found in [10]. The resulting
mesh incorporates range data taken from any number of
viewpoints, and thus may include sets of points which
could not have been visible simultaneously from any sin-
gle viewpoint. Through merging several registered high-
resolution surfaces, we build up our final model.

Two features of this procedure make it convenient for
users wishing to build large, complex models. First, the
only step in the process which depends on the user’s
choice of range sensor is the acquisition of range data; the
manipulation of meshes, registration of surfaces, ICP, and
merging are completely independent of the range sensor
used. Furthermore, since no estimate of the transformation
between views is required for the registration procedure to
return the correct result, the user is allowed to move the
sensor freely between snapshots without needing to pre-
cisely measure the difference in position and orientation
between successive locations. These two features make
registration of range data from a large number of view-
points fast and largely automatic.

4.0  Detailed Example

This method of surface registration has been successfully
applied to build a model of a large warehouse space com-
posed of two adjacent rooms. The building measured

Figure 3: A view of the interior, shown at low resolution
(top) and high resolution (bottom), with detail magnified to
show the difference in resolution.



roughly 60 meters long by 20 meters wide by 10 meters
high, and was filled with an assortment of clutter and
debris as shown in Figure 4. We used a K2T/ZNF laser

range finder [6][7] mounted atop a minivan to collect
range data at 32 different points in the warehouse; each
scan of the sensor covered a 360-degree field of view with
20 degree depression and a maximum range of about 40
meters. The resolution of the sensor is rated in the milli-
meter region.

Each scan of the range finder returned 1.8 million 3-D
points; through naive subsampling this set was reduced to
65000 points. The resulting point cloud was converted into
a mesh as described in Section 2 and resampled to roughly
5000 points for registration.

Surface meshes produced from each of the 32 data sets
were successfully registered to the meshes of adjacent
scans. Figure 5 shows the registration results for two of the
meshes. With the transformations between neighboring
meshes known, it was then possible to align all meshes in
a common coordinate system so that they could be unified
into a single mesh that covered the entire warehouse space.
Because of limitations in our implementation of the merg-
ing algorithm, only 20 of the views were merged into the
final model, although all 32 data sets were registered. The

complete mesh of the warehouse contained 138000 points
at full resolution, while a low-resolution version of the
model contained 25000 points. The resolution of the final
mesh was low compared to the that of the constituent high-
resolution views due to limitations of the mesh merging
implementation; otherwise, it would have been possible to
produce a final mesh with no resolution loss. Statistics for
each of the different types of surface mesh-- high-resolu-
tion single-viewpoint, low-resolution single-viewpoint,
high-resolution complete, and low-resolution complete--
are summarized in Table 1. Resolution is measured as the
average length of edges in the mesh, in millimeters.

  Figure 6 shows a bird’s-eye view of the final model,
while Figure 7 shows the positions of the sensor at view-
points A, B, and C from Figure 4 along with views of the
final model from these vantage points.  As mentioned

Figure 4: Three reflectance images of different sections of
the warehouse area; view A (top), view B (middle), and view
C (bottom).  Only part of the panoramic scan is shown for
each image.

View A:

View B:

View C:

TABLE 1. Mesh Statistics

Mesh Type # Points # Edges Resolution

High Res. 65000 160000 70

Low Res. 5000 12000 275

Complete
High Res.

138000 400000 150

Complete
Low Res.

25000 65000 320

Figure 5: (Top) Registered range data acquired from two
separate sensor locations.  One data set is displayed in
black wireframe, the other in solid grey.  (Bottom) Boxed
section enlarged to show detail.



above, we did not attempt to refine the final merged model;
more sophisticated merging algorithms can certainly be
used once the transformations are computed.

Figure 6: Bird’s-eye view of the building model.

5.0  Transformation Clipping

While it is important that no a priori estimate of the trans-
formation between two surfaces is required for the algo-
rithm described in Section 3 to successfully register them,
a rough estimate of the transformation can be helpful in
guiding the search for possible point correspondences and
safeguarding against registration mistakes.  In our proce-
dure for surface registration, we allow the user to specify
information about the ranges of possible translation and
rotation between viewpoints to improve registration per-
formance; we refer to the truncation of the space of
allowed transformations as “transformation clipping.”

Let A and B be the two surfaces to be registered. In the
original spin-image matching algorithm, a fixed percent-
age of points is picked at random from both A and B as
representative samples of the surfaces. To search for point
correspondences, each point from A’s sample is compared
to each point in B’s, regardless of the relative positions of
the points on their respective surfaces. This approach
encourages comparisons between points on the two sur-
faces that clearly don’t correspond to each other; two diffi-
culties in the registration process emerge.

First, if a section of surface A is locally similar enough to
a non-corresponding section of surface B, a wildly inaccu-
rate registration can result; in this way, the user’s common
sense about the relative locations of the two surfaces is not
enforced. For example, Figure 8 shows a scenario in which
a range sensor is mounted on a wheeled mobile robot in a
hallway with corners. When registering the first range
mesh (shown in black) with the second (shown in grey), it
appears, purely on account of the shape of the meshes, that
the best alignment between them is shown in the righthand
part of the figure. However, the transformation that regis-
ters the meshes in this way aligns the ceiling from the first
data set with the floor of the second and vice versa. Clearly

this interpretation of the data is unacceptable, given the
setup of the sensor and our assumptions about how the
robot can move (i.e., that this particular robot cannot turn
end-over-end between shots).  Although this particular
mistake did not occur in the warehouse example shown in
the previous section, it is clear that it can occur whenever
the matching between data and map is ambiguous.
Regardless of whether or not the sensor is mounted on a
mobile robot, there are situations in which we wish to
leverage our common sense about the transformation
between data sets in order to safeguard against unrealistic
interpretations of the data. For example, the range sensor
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Figure 7: Views of the final model from viewpoints A, B,
and C of Figure 4.
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may be mounted on a tripod which is moved about in a
room with a flat floor; in this case we know that the sen-
sor’s elevation will remain the same at each shot, give or
take small changes due to a slight slope in the floor. In
other scenarios, the sensor may be mounted on a track
which allows it to translate in only one direction, or it may
always be aimed at the walls rather than towards the ceil-
ing or floor. Each of these situations implies a truncation
of the transformation space; incorporating this knowledge
into the registration process is desirable to enforce our
intuitions about how the data was gathered.

Figure 8: The robot takes range data from two different
positions in the hallway (left). The registration which best
aligns the two data sets flips the black mesh 180 degrees and
implies the unlikely situation that the robot flipped onto its
head between scans (right). This situation could be easily
avoided by using common-sense geometric constraints.

The second reason to enforce transformation constraints
involves speed of execution. If n is the number of points in
the point sample for a particular mesh, then assuming each
mesh selects the same number of points the process of
comparing spin images takes O(n2) pointwise compari-
sons; for large surface meshes, this process can be prohibi-
tively expensive so any reduction in the correspondence
search space will reduce execution time.

We therefore allow the user to specify minimum and max-
imum possible values for the three translational and three
rotational components of the transformations between
meshes.  These transformation constraints are used to
compute, for each point in each mesh, its maximum and
minimum possible displacement along the three dimen-
sions; these displacement restrictions are used to decide
which spin-images from the two meshes should be com-
pared to each other. As shown in Figure 11, this technique
defines a bounding box of motion around each point; thus
the transformation constraints are not enforced especially
tightly. However, we demonstrate in Figure 12 that the
number of spin-image comparisons nonetheless drops dra-
matically as a result of limiting the correspondence space
in this way. The bounding-box approach to transformation
clipping easily extends to cases in which  the set of possi-
ble transformations consists of multiple subspaces of the
transformation space; in other words, the method could

readily be applied to scenarios where we know that
between scans the sensor translated along and rotated
about a particular axisor rotated about a different axis.

Given a point in a coordinate frameX, Y, Z, we describe a
3-D transformation to this point as a rotation byωx about
X, followed by a rotation ofωy about Y, followed by a
rotation ofωz about Z, followed by translations tx, ty, and
tz along theX, Y, andZ axes (this is theX-Y-Z fixed angle
convention of [8]). Let yx(x,ω) and zx(x,ω) be the y and z
coordinates of a pointx = (x,y,z) after it has been rotated
aboutX by ω; similarly xy(x,ω) and zy(x,ω) are the x and z
coordinates of a pointx after it has been rotated byω
aboutY and xz(x,ω) and yz(x,ω) are the x and z coordi-
nates ofx after it has been rotated aboutZ by ω. With these
notations:

We are given constraints on the ranges of the rotations and
translations allowed to align surface A to surface B, spe-
cifically maximum and minimum rotationsωxmin and
ωxmax about theX axis, minimum and maximum transla-
tions tzmin and tzmax along theZ axis, and so on.   Looking
at xyz, the projection ofx into theY-Z plane, we can easily
compute the maximum value that zx(x,ω) may assume
given x and given thatωxmin < ω < ωxmax by observing
that one of two possible cases occur as shown in Figure 9;
either the rotation angle that would alignxyz with the posi-
tive Z axis is betweenωxmin andωxmax, or it is not. In the
first case, rotatingx so thatxyz lines up with the positive Z
axis maximizes zx(x,ω); otherwise, rotating by either
ωxmin or ωxmax maximizes zx(x,ω). Similarly, we can find
the maximum of yx(x,ω) by checking whether the angle
that alignsxyz to the positive Y axis is betweenωxmin and
ωxmax; if so, then rotating x by this angle maximizes
yx(x,ω), and if not, then rotating by eitherωxmin or ωxmax
maximizes yx(x,ω). Furthermore, the minimum values of
yx(x,ω) and zx(x,ω) may be found similarly by examining
whether the interval [ωxmin,ωxmax] contains the angles that
would align xyz with the negative y and z axes, respec-
tively.

Let zxmax and yxmax be the maxima of zx(x,ω) and yx(x,ω)
and letx’  =(x,yxmax,zxmax). By computing the maxima and
minima of xy(x’ ,ω) and zy(x’ ,ω), we find the maximum
and minimum possibleX andZ values that the pointx can
take on after it is rotated about theX andY axes by angles
in the appropriate ranges. Extending this analysis to rota-
tion about theZ axis and translations alongX, Y, andZ, we
arrive at maximum and minimumX, Y, andZ values for the
pointx.

Thus, for each pointxA from surface A, we compute the

zx x ω,( ) y ωsin z ωcos+= zy x ω,( ) z ωcos x ωsin–=

yx x ω,( ) y ωcos z ωsin–= yz x ω,( ) x ωsin y ωcos+=

xy x ω,( ) z ωsin x ωcos+= xz x ω,( ) x ωcos y ωsin–=



maximum and minimum possible X, Y, and Z values for xA
under transformations in the ranges supplied by the user.
For each point xB from surface B, If xB’s coordinates fall
between these maxima and minima, then we compare the
spin images for xA and xB for possible correspondence;
otherwise, we know that xA could not possibly be trans-
formed to xB according to the constraints specified by the
user, so the two points are not considered candidates for a
correspondence.

An example of two scenes registered with transformation
clipping is shown in Figure 10 and Figure 11.  The range

data for the first snapshot was taken with the sensor posi-
tioned at the point marked; it was then moved forward
roughly 1.5 meters and the data for the second snapshot
was taken. When registering the two surfaces, we esti-
mated that the sensor translated forward between 1 and 2
meters, and to account for any inaccuracies in motion, we

estimated that the sensor could have translated to the left
or right up to 100 cm, translated up or down up to 100 cm,
and rotated up to 5 degrees in any direction. (Upon regis-
tering the two surfaces, we found that the sensor had actu-
ally moved forward roughly 1.4 m, up 15 cm, and to the
right 33 cm; rotations were all less than 1 degree). Figure
12 shows the average number of spin-image comparisons
needed per point when registering the two surfaces at dif-
ferent resolutions, with and without transformation clip-
ping in use.

6.0  Performance and Limitations

6.1  Accuracy

One way to assess the accuracy of the registration proce-
dure is to examine the closest-point error between the
high-resolution meshes after the ICP procedure.  The clos-
est-point error for a particular point in a mesh is the
euclidean distance between that point and the closest point
to it in the mesh it has been registered to; in the warehouse
example, we found that the average closest point error was
on the order of 1 cm after ICP had been run on the high-
resolution mesh.  We also ran ICP on the low-resolution
meshes after they had been aligned using the rough trans-
formation estimate, and found that the average closest-
point error was roughly 15 cm, thus exhibiting the utility
of high-resolution transformation refinement.

Another measure of registration accuracy is simply the
number of correspondences found between meshes.  On
average, about 1000 correspondences were found during
the registration process; in other words about 20% of the
points from each mesh were found to match each other.
With such a significant fraction of range points contribut-
ing to the transformation estimate, we can be relatively
confident in its fidelity.
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Figure 9: The two cases to consider when determining the
maximum attainable z value under rotations between ωxmin
and ωxmax: either it’s possible to align  xyz with the positive
z axis (left) or it is not (right).
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Figure 10:  Surface mesh for one view of the building with
one point of the mesh highlighted in black.

Figure 11: Mesh for a second view of the interior.  Only those
points inside the grey box will be compared to the
highlighted point in Figure 10.
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Figure 12: A plot of the average number of spin-image
comparisons needed per point with and without
transformation clipping, as a function of point density of the
mesh.



6.2  Limitations

It is apparent from the overhead view of the final mesh of
the warehouse (Figure 6) that the model of the building
drifts to the right along its length, whereas in reality none
of the walls of the building are curved. This error is intro-
duced by the order in which surfaces are registered to each
other and transformed into a common coordinate system.
Each mesh is only registered to the mesh produced from
the next nearest sensor scan; the recovered transformations
are then daisy-chained together to transform all the
meshes into a single coordinate system. As a result, slight
errors in any transformation are propagated onto the next
transformation in the chain; the error accumulates to the
point that the transformation that shifts the last mesh in the
chain into the common coordinate system may be notice-
ably inaccurate. Also, while it is clear that two meshes
must overlap to a certain degree in order for registration to
be successful, it is difficult to predict what the system will
do if the meshes do not. Generally speaking, a better
method for evaluating the quality of the match is needed.

7.0  Conclusion

Several enhancements would help to make certain aspects
of this process more automatic and user-friendly.

Resolution of the simplified meshes used to register indi-
vidual views is selected manually by the user. Ideally, we
would prefer that the user not need to know about such
details; we are hoping to develop methods for automatic
selection of mesh resolution based on the shape complex-
ity of the surfaces.

Another decision we wish to free the user from concerns
the design of spin-images. Currently, the user decides how
many bins the spin-images should have in theα and β
directions (its “width” and “height”) and the size of the
volume of space covered by each bin in the spin-image (its
“resolution”). Future work will address the problem of
automatically determining what values these parameters
should take to ensure that the spin-images for a particular
mesh express its shape characteristics most descriptively
so that the ambiguities in the registration process will be
minimized.

Also, while our final model of the garage interior is a rep-
resentation of the shape of the surfaces found in the build-
ing, it is not a complete depiction of the real scene in that
no reflectance or color information is incorporated into the
model. Another avenue for future research is the simulta-
neous registration of range and reflectance data, as well as
the simultaneous merging of range images and co-regis-
tered intensity maps.
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