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Abstract

We present a method fowilding models of comple
ervironments from range datathered at multiple vie-
points. Our approach is unique in that no prioridedlge
of the relatve positions of the vigpoints is needed in

order to rgister data from them. Furthermore, we present
a technique for specification and utilization of so-called
transformations

“common-sense” constraints on the
between viwrs to imprae the accuragcand speed of the
registration process. Results are whadrom our efort to

map a 60 m. by 20 m. multiple-room storage area contain-

ing a cluttered array of objects.

1.0 Introduction

The problem of bilding models from multiple vies is
critical in various applications, including remote opera-
tion, virtual ewironment lilding, and construction of
object libraries for recognition. In this papere consider
the problem of rgistering range data sets from multiple
locations in order touild a complete model of an\dron-
ment. A typical scenario wolves mag viewpoints wer a
large area with poor or noxistent initial estimation of the
relative positions of the vies. Eventually our goal is to
build maps that oeer hundreds of square meters aty
high (e.g., sub-centimeter) resolution.

This problem has manfacets, including computing the
transformations between ws, correcting the transforma-

tions to compensate for drift and error accumulation,

meiging the vievs into a single model once the transfor-
mations are computed, and incorporating color axiuite
information into the final model. Here, we focus on the
first problem: reliable gistration of lage point sets from
range data. Examples of wiemeging are shan only to
illustrate the results of gestration.

Two broad classes of techniqguevé®een desloped for

point set rgistration. Methods based on feature matching
establish correspondences between point features or sur-

face primitves to compute transformations [3][4]. These
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approaches do not rely on prior kvledge of the transfor-
mations lot they do require reliablexaraction of the fea-
tures, which is a difcult problem in itself. Methods based
on iteratve refinement start with initial estimates of the
transformations between wis and refine them by itera-
tive minimization of a criterion based on the distance
between point sets. The best-iumotechnique of this type
is the ICP algorithm originally proposed by Besl and
McKay [2]. ICP has been used in modellding systems
[15] and numerousxéensions hee been proposed, e.g.,
by Zhang [17] and Wheeler [16].

Both classes of techniquesvlase&ere shortcomings that
prevent their application to practical modelilding prob-
lems. First, feature x¢raction and sgmentation is not
practical in a general, clutteredvimonment due to the
large number of features and the comjiie of the sur-
faces. Second, the relagipositions of vies is often not
known in adwance to a high dgee of accurag this pre-
cludes the use of iteraé techniques. ¢t example, posi-
tion estimates from dead-remking of a mobile platform
may be too inaccurate for itenai techniques to ark,
especially ger lage distances. Also, in some applications,
peculiar emironmental constraints may ment the esti-
mation of relatie poses. &+ all these reasons, it is desir-
able to use a matching technique which is general enough
to handle a wide ariety of surces, and which does not
require ag prior estimate of the transformation between
views.

The method described here is based on a general approach
to surice matching [9], which has been applied success-
fully to object recognition [12] and three-dimensional
object modeling. This method hasaveritical features
which address the shortcomings of yioeis techniques.
First, it does not require sade sgmentation or feature
extraction. Second, it does not require Whexge of the
transformation between sades prior to mgistration.
Owing to these ta features, this suate matching algo-
rithm can be applied to problems of darscale model
building. The goal of this paper is to shdowv our match-

ing algorithm can be used in the codtef mapping lage,
cluttered emironments. Specificallywe use as arxample

the mapping of a lge industrial &cility.



Although the surface matching algorithm does not require
any knowledge of the relative poses of the views, it is not
difficult to include pose constraintsin the algorithm if they
are available. We show that extending the matching algo-
rithm to take advantage of such constraints is straightfor-
ward and can reduce the computation time by orders of
magnitude, even if the constraints are relatively weak.

2.0 Point Matching Using Spin-lmages

In [9], Johnson introduces the spin-image, a two-dimen-
sional descriptor of the local shape of a free-form three-
dimensional surface at a point p on that surface. Spin-
images encode the positions of points near p in terms of
distance along and distance from the approximated normal
to the surface at p. By comparing this coordinate informa-
tion from the spin-images of two different points, we
arrive at a measure of local shape similarity between the
surfaces surrounding those two points.

To construct the spin-image for an arbitrary point p, we
first find the best-fit plane to the nearest neighbors of p and
approximate the normal to p as the normal to this plane.
We then define a 2-D basis using the normal n and the
plane ® perpendicular to n and passing through p. For each
point X in the vicinity of p we compute its coordinates
(a,B) with respect to this basis; a is the distance from p to
x measured in the plane & while (3 isthe perpendicular dis-
tance from x to 2 (Figure 1.)

The (a,B) values are then discretized and accumulated into
a 2-D array of bins called a spin-image; each bin in the
spin-image corresponds to some range of a and 3 values.
These spin-images are compact descriptors of the local
shape of a surface around a particular point; if two points
have similar spin-images, they are considered to have sm-
ilar local shape (Figure 2).

Spin-image similarity is determined by simple linear cor-
relation of bin values, supplemented with a confidence
metric to take into account the number of empty bins in
both spin-images. Bins containing no points are not con-
sidered in the correlation calculation to help minimize the
effects of clutter and occlusion on shape similarity by only
considering bins in the spin images that have been filled.

/&Y

Figure 1: The spin-image for point p is found by recording
the distance of all nearby pointsx from the surfacenormal n
(a) and the distance from x to p along n () (from [12]).

Figure 2: Spin-images from points on surface
meshes from two views. Spin-images from corresponding
pointsin the surfaces have similar spin-images.

Thefinal similarity measure between two points takes into
account the number of bins used to compute correlation,
so that spin-images with the highest amounts of overlap
are considered the most similar.

Johnson shows in [9] that through determining the similar-
ity between spin-images of points from two different sur-
faces, it is possible to recover the transformation that
registers the surfaces even though no initial estimate of
this transformation is known at the time of registration.

3.0 Surface Registration

Spin-image matching provides a powerful tool for build-
ing large-scale models from sensor scans taken at unspeci-
fied locations. In this section we describe the process of
using spin-images to register range data taken from a vari-
ety of locations. We assume that regardless of the sensor
used, range data from it consists of 3-D points in some
fixed coordinate frame. Given these points, a triangular
mesh is formed by connecting nearest neighbors, and
noisy points and edges in this mesh are removed through
cleaning and smoothing operations. At this point, we have
a high-resolution 3-D representation of the model as seen
from a particular viewpoint; for reasons to be explained
below, we then simplify this surface using the algorithm



Figure 3: A view of the interior, shown at low resolution
(top) and high resolution (bottom), with detail magnified to
show the difference in esolution.

found in [11] to obtain a l@-resolution ersion of the sur-
face, as shen in Figure 3.

Given two low-resolution meshes, wegister them using
spin-image matching as folls. First, a fied fraction of
points is selected at random from both scek. Spin-

images are produced for these points, and all the spin-

images from one swate are compared to all the spin-
images from the other using the similarity measure
described abee. When a pair of spin-images are found to
have high similarity the points that produced them are

considered to correspond to each other; after all spin-

image comparisons ta talen place, we are left with a set
of point matches between theavsurfices. Finally an
estimate of the transformation that aligns the surfaices

is computed from the point matches using the algorithm of
[5].

The transformation aligning corresponding points is con-
sidered only a rough estimate of the true transformation
between the range data sets foo twasons: first, theue

resolution mesh from which correspondences anerdia
neccessarily an approximation of thevidata, and second,
the set of correspondences that determines the transforma-
tion consists of only a subset of the points on the simpli-
fied surhce. r these reasons, after we find the
transformation that aligns theweresolution meshes we
apply it to the high-resolution meshes; we then use the ICP
algorithm [2] on the roughly-aligned high-density sigds

to refine the transformation estimate. The resulting trans-
formation aligns the full range data sets with acceptable
accurag.

Registering lav-resolution meshes and refining the trans-
formation estimate on high-resolution meshess ound

in practice to be much morefiefent than rgistering the
high-resolution meshes directior example, one full-res-
olution data set lig the one seen in Figure 2 contains
roughly 65000 points (compared to roughly 4000 points in
the adjacent M-resolution mesh); gistering two meshes

of this size is computationally infeasible due to the num-
ber of spin-image comparisons required. In ynaases,
the transformation that aligns theMaesolution suidices
aligns the high-resolution sades so well that the ICP
procedure does not need to do mudbrknto reduce the
error between the sates bela an acceptable Vel.

Once seeral surhces hee been rgistered togethethey

are transformed into the same coordinate frame and
merged using the algorithm found in [10]. The resulting
mesh incorporates range dataetakrom agy number of
viewpoints, and thus may include sets of points which
could not hge been visible simultaneously fromyasin-

gle vienvpoint. Through meing seeral raistered high-
resolution suidces, we bild up our final model.

Two features of this procedure nealt corvenient for
users wishing to dild large, complg models. First, the
only step in the process which depends on the suser’
choice of range sensor is the acquisition of range data; the
manipulation of meshes,gistration of surdices, ICPand
melging are completely independent of the range sensor
used. Furthermore, since no estimate of the transformation
between viwss is required for the gistration procedure to
return the correct result, the user is akad to mee the
sensor freely between snapshots without needing to pre-
cisely measure the @i#frence in position and orientation
between success locations. These twfeatures mak
registration of range data from a d@r number of vie-
points fast and lagely automatic.

4.0 Detailed Example

This method of sudce rgistration has been successfully
applied to hild a model of a laye warehouse space com-
posed of tw adjacent rooms. Theuiiding measured



roughly 60 meters long by 20 meters wide by 10 meters
high, and vas filled with an assortment of clutter and
debris as shen in Figure 4. W& used a K2T/ZNF laser

View A: '

View C:

Figure 5: (Top) Registeed range data acquied from two
separate sensor locations. One data set is disptaly in
black wireframe, the other in solid gey. (Bottom) Boxed
section enlaged to shev detail.

Figure 4: Three reflectance images of diffent sections o complete mesh of theasehouse contained 138000 points
the warehouse aea; view A (top), view B (middle), and viev at full resolution, while a l-resolution ersion of the

C (bottom). Only part of the panoramic scan is shon for model contained 25000 points. The resolution of the final
each image. mesh vas lav compared to the that of the constituent high-

resolution vigvs due to limitations of the mesh rgargy

range finder [6][7] mounted atop a mian to collect implementation; otherwise, itauld hare been possible to
range data at 32 dérent points in the arehouse; each  produce a final mesh with no resolution loss. Statistics for
scan of the sensorvered a 360-dgee field of viev with each of the dferent types of suaice mesh-- high-resolu-

20 deyree depression and a maximum range of about 40 tion single-vievpoint, lov-resolution single-viepoint,
meters. The resolution of the sensor is rated in the milli- high-resolution complete, andweresolution complete--
meter rgion. are summarized inable 1. Resolution is measured as the

Each scan of the range finder returned 1.8 million 3-D @€rage length of edges in the mesh, in millimeters.

points; through nae subsampling this setas reduced to

65000 points. The resulting point cloudsworerted into TABLE 1. Mesh Statistics

a mesh as described in Section 2 and resampled to roughly =~ Mesh Type # Points # Edges Resolution
5000 points for rgistration. High Res. 65000 160000 70

Surface meshes produced from each of the 32 d_ata Sets | ow Res. 5000 12000 275

were successfully gestered to the meshes of adjacent compl 138000 400000 150

scans. Figure 5 st the rgistration results for tavof the H??F’Rit:

meshes. \th the transformations between neighboring ¢ '

meshes knon, it was then possible to align all meshes in Complete 25000 65000 320

a common coordinate system so thaytbeuld be unified Low Res.

into a single mesh that wered the entire arehouse space. Figure 6 shas a birds-e/e view of the final model,

Because of limitations in our implementation of thegner  while Figure 7 shas the positions of the sensor atwie
ing algorithm, only 20 of the wes were meged into the points A, B, and C from Figure 4 along with wie of the
final model, although all 32 data sets wegistered. The  final model from these antage points. As mentioned



above, we did not attempt to refine the final ged model;

more sophisticated mging algorithms can certainly be

used once the transformations are computed.

- T

Figure 6: Bird's-eye view of the hiilding model.

5.0 Transformation Clipping

While it is important that no a priori estimate of the trans-
formation between tw surfices is required for the algo-

rithm described in Section 3 to successfullyiseer them,

a rough estimate of the transformation can be helpful in
guiding the search for possible point correspondences and

safguarding aginst rgistration mistaks. In our proce-
dure for suréce rgistration, we allev the user to specify

information about the ranges of possible translation and

rotation between vigpoints to impree ragistration per-

formance; we refer to the truncation of the space of

allowed transformations as “transformation clipping.

Let A and B be the tw surbices to be mstered. In the
original spin-image matching algorithm, adik percent-

age of points is piad at random from both A and B as

representatie samples of the sades. © search for point

correspondences, each point frohs Sample is compared

to each point in B, regardless of the relate positions of
the points on their respeeti surbices. This approach
encourages comparisons between points on thestw-
faces that clearly doncorrespond to each other;awliffi-
culties in the rgistration process engs.

First, if a section of suatce A is locally similar enough to
a non-corresponding section of aaé B, a wildly inaccu-
rate rgistration can result; in thisay, the uses common
sense about the rekadilocations of the tavsurfaices is not
enforced. Br example, Figure 8 shes a scenario in which

a range sensor is mounted on a wheeled mobile robot in a

haliway with corners. When géstering the first range
mesh (shan in black) with the second (sl in grey), it

appears, purely on account of the shape of the meshes, that!?

the best alignment between them isvghdn the righthand
part of the figure. Hwever, the transformation that gis-
ters the meshes in thisay aligns the ceiling from the first
data set with the floor of the second and vieesa. Clearly
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Figure 7: iews of the final model fom viewpoints A, B,
and C of Figure 4.

this interpretation of the data is unacceptableemithe
setup of the sensor and our assumptions abowtthe
robot can mee (i.e., that this particular robot cannot turn
end-overend between shots). Although this particular
mistale did not occur in the arehousexample shan in

the preious section, it is clear that it can occur whame

e matching between data and map is ambiguous.
Regardless of whether or not the sensor is mounted on a
mobile robot, there are situations in which we wish to
leverage our common sense about the transformation
between data sets in order to gaf@d aginst unrealistic
interpretations of the dataoFexample, the range sensor



may be mounted on a tripod which is vad about in a readily be applied to scenarios where we vknthat
room with a flat floor; in this case we kmdhat the sen- between scans the sensor translated along and rotated
sor’s eleation will remain the same at each shovegor about a particular axiar rotated about a dédrent axis.

take small changes due to a slight slope in the filbor  Gjyen 4 point in a coordinate fraiXe Y, Z, we describe a
other scenarios, the sensor may be mounted on a tracks.p yransformation to this point as a rotationdayabout
which allaws it to translate in only one direction, oritmay  y ¢gjiowed by a rotation ofs, about Y followed by a
always be aimed at thealls rather than wards the ceil-  giation ofw, about Z, folloved by translationstt,, and
ing or floor Each of these situations implies a truncation t, along theX, Y, andZ aes (this is th&-Y-Z fixed angle
of the transformation space; incorporating thisvikeolge convention of [8]). Let y(x,00) and z(x,w) be the y and z
into the reistration process is desirable to enforce our .., dinates of a point = (x,y,z) after it has been rotated
intuitions about he the data \&s githered. aboutX by w; similarly x,(x,0) and z(x,w) are the x and z
coordinates of a poirmt after it has been rotated hy

’ aboutY and x(x,w) and y(x,w) are the x and z coordi-
: nates ok after it has been rotated ab@uty w. With these
notations:
Z,(X, W) = ySsinw+ zcosw zy(x, W) = ZCOSW—XSinw
Yy (X, W) = ycosw-zsinw Y,(X, W) = xsinw +ycosw
xy(x, W) = zSinw + X Cosw X,(X, W) = XCOSw—Y Sinw

We are gien constraints on the ranges of the rotations and

Figure 8: The mbot takes range data fom two different translations allwved to align sudce A to suidice B, spe-
pqsitions in the hallway _(Ieft). The egistration which best cifically maximum and minimum rotation&y,,, and
aligns the two data sets flips the black mesh 180 deggs and Wymax @bout theX axis, minimum and maximum transla-
implies the unlikely situation that the robot flipped onto its tions Ly and §ax@long theZ axis, and so on.  Looking

head between scans (right). This situation could be easily

) ) _ ) atxy,, the projection ok into theY-Z plane, we can easily
avoided by using common-sense geometric constraints.

compute the maximumalue that z(x,w) may assume

. . i \ < W< i
The second reason to enforce transformation constramtsg'venx and gven thate,mip < W < Wymax by observing

involves speed ofxecution. If n is the number of points in that one of possmle cases occur aswhc_)n Figure 9
the point sample for a particular mesh, then assuming eachpf'ther th? rptel;tmn angle thab‘g’ld ahgnxyz_vylth the po.:,:-
mesh selects the same number of points the process oft!veZ axis s betweeymin aNAWymay OF It 1S NOt. I.n.t €
comparing spin images ek O(R) pointwise compari- first case, rotating so thatx,, lines up with the posite Z

sons; for lage suréce meshes, this process can be prohibi- aX|s. nc:?XImIZe;aéﬁ)iziaSOt?fL\;\)"Sgi’mzloatgtlnv%/]e t():);neflitr?der
tively expensve so ag reduction in the correspondence Wymin OF Wymax AX,00). ¥

search space will reducgezution time. the m:_alximum of y(x,w) _b_y che(_:ki_ng whether the angle
_ o that alignsxy, to the positie Y axis is betwee,y;, and
We therefore allw the user to specify minimum and max- ¢y - if so, then rotatingx by this angle maximizes
imum possible alues for the three translational and three v, (x ¢y), and if not, then rotating by eithex i, Or Wymax
rotational components of the transformations between maximizes y(x,w). Furthermore, the minimumaiues of
meshes. These transformation constraints are used toy, (x w) and z(x,w) may be found similarly byx@mining
compute, for each point in each mesh, its maximum and whether the intem [y 0max] CONtaINs the angles that

minimum possible displacement along the three dimen- would alignx,, with the neative y and z ass, respec-
sions; these displacement restrictions are used to decidetjyely,

which spin-images from the twmeshes should be com-
pared to each otheAs shaevn in Figure 11, this technique
defines a bounding box of motion around each point; thus

the transformation constraints are not enforced especiall - . .
b Y and minimum possibl¥ andZ values that the pointcan

tightly. However, we demonstrate in Figure 12 that the L
number of spin-image comparisons nonetheless drops dra{2K8 On after it is rotated about theand axes by angles

matically as a result of limiting the correspondence space 't?oah:bizg;ﬂg'gﬁ;iﬂg?&iﬁ;ﬂg%Ighi;z $n:1rl13c/jszlsvf/c$ rota-
in this way. The bounding-box approach to transformation . ; L ' '

clipping easily gtends to cases in which the set of possi- arrve at maximum and minimui, Y, andZ values for the

ble transformations consists of multiple subspaces of the pointx.

transformation space; in otheromds, the method could  Thus, for each points from surce A, we compute the

Let Zmax 8nd Ymax be the maxima of,gx,w) and y(x,w)
and letx’ =(X,YymaxZxmax- BY computing the maxima and
minima of x,(x’,w) and z(x',w), we find the maximum
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Figure 9: The two cases to consider when determining the
maximum attainable z value under rotations between wymin
and wWymay: €ither it’s possibleto align Xy, with the positive
z axis (l€ft) or it isnot (right).

maximum and minimum possible X, Y, and Z values for x
under transformations in the ranges supplied by the user.
For each point xg from surface B, If xg’s coordinates fall
between these maxima and minima, then we compare the
spin images for x5 and xg for possible correspondence;
otherwise, we know that x5 could not possibly be trans-
formed to xg according to the constraints specified by the
user, so the two points are not considered candidates for a
correspondence.

An example of two scenes registered with transformation
clipping is shown in Figure 10 and Figure 11. The range

Figure 10: Surface mesh for one view of the building with
one point of the mesh highlighted in black.

Figure 11: Mesh for a second view of theinterior. Only those
points inside the grey box will be compared to the
highlighted point in Figure 10.

data for the first snapshot was taken with the sensor posi-
tioned at the point marked; it was then moved forward
roughly 1.5 meters and the data for the second snapshot
was taken. When registering the two surfaces, we esti-
mated that the sensor trandated forward between 1 and 2
meters, and to account for any inaccuracies in motion, we

estimated that the sensor could have trandated to the left
or right up to 100 cm, translated up or down up to 100 cm,
and rotated up to 5 degrees in any direction. (Upon regis-
tering the two surfaces, we found that the sensor had actu-
ally moved forward roughly 1.4 m, up 15 cm, and to the
right 33 cm; rotations were all less than 1 degree). Figure
12 shows the average number of spin-image comparisons
needed per point when registering the two surfaces at dif-
ferent resolutions, with and without transformation clip-
pingin use.

6.0 Performance and Limitations

6.1 Accuracy

One way to assess the accuracy of the registration proce-
dure is to examine the closest-point error between the
high-resolution meshes after the |CP procedure. The clos-
est-point error for a particular point in a mesh is the
euclidean distance between that point and the closest point
to it in the mesh it has been registered to; in the warehouse
example, we found that the average closest point error was
on the order of 1 cm after ICP had been run on the high-
resolution mesh. We aso ran ICP on the low-resolution
meshes after they had been aligned using the rough trans-
formation estimate, and found that the average closest-
point error was roughly 15 cm, thus exhibiting the utility
of high-resolution transformation refinement.

Another measure of registration accuracy is simply the
number of correspondences found between meshes. On
average, about 1000 correspondences were found during
the registration process; in other words about 20% of the
points from each mesh were found to match each other.
With such a significant fraction of range points contribut-
ing to the transformation estimate, we can be relatively
confident in its fidelity.

100000

with clipping o—
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10 L
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Figure 12: A plot of the average number of spin-image
comparisons needed per point with and without
transformation clipping, as a function of point density of the
mesh.
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